
EDF HPC

Puppet-HPC reference documentation

Date: Pages: 43

Authors: CCN-HPC



Contents

1 About this document 3
1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Typographic conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Build dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Overview 5

3 Software architecture 6
3.1 Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Hiera layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Internal repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 External dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 Genericity levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.6 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.7 Cluster definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.7.1 Main shared parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.7.2 Network definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.7.3 Node definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.8 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.8.1 Push and apply scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.8.2 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.9 Sensitive data encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.9.1 Encryption keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.9.2 Key propagation service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9.3 Sensitive files decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.9.4 Bootstrap procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Development Guidelines 20
4.1 Main rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Directories structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Language settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Hieradata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4.1 Parameter types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.2 Shared parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4.3 Simple parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4.4 Advanced parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4.5 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5.1 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5.2 Classes inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5.4 Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.6 Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.7 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.8 Advanced processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1



CONTENTS

4.9 Git repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.10 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.10.1 Static analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.10.2 Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.10.3 Unit tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.11 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.11.1 Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.11.2 Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Reference API 43

Puppet-HPC reference documentation 2



Chapter 1

About this document

1.1 Purpose

This document contains a generic description of an HPC system in terms of its architectural views.

1.2 Typographic conventions

The following typographic conventions are used in this document:

• Files or directories names are written in italics: /admin/restricted/config-puppet.
• Hostnames are written in bold: genbatch1.
• Groups of hostnames are written using the nodeset syntax from clustershell. For example, genbatch[1-

2] refers to the servers genbatch1 and genbatch2.
• Commands, configuration files contents or source code files are set off visually from the surrounding

text as shown below:
$ cp /etc/default/rcS /tmp

1.3 Build dependencies

On a Debian Jessie system, these packages must be installed to build this documentation:

• edf-doc-materials >= 2.0
• inkscape
• rubber
• texlive-latex-extra

1.4 License

Copyright © 2014-2017 EDF S.A.
CCN-HPC <dsp-cspito-ccn-hpc@edf.fr>
This document is governed by the CeCILL license under French law and
abiding by the rules of distribution of free software. You can use,
modify and/ or redistribute the document under the terms of the
CeCILL license as circulated by CEA, CNRS and INRIA at the following
URL "http://www.cecill.info".

3

https://github.com/cea-hpc/clustershell/wiki/nodeset
mailto:dsp-cspito-ccn-hpc@edf.fr


CHAPTER 1. ABOUT THIS DOCUMENT

As a counterpart to the access to the source code and rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty and the document’s author, the holder of the
economic rights, and the successive licensors have only limited
liability.

In this respect, the user’s attention is drawn to the risks associated
with loading, using, modifying and/or developing or reproducing the
document by the user in light of its specific status of free software,
that may mean that it is complicated to manipulate, and that also
therefore means that it is reserved for developers and experienced
professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the document’s suitability as regards their
requirements in conditions enabling the security of their systems and/or
data to be ensured and, more generally, to use and operate it in the
same conditions as regards security.

The fact that you are presently reading this means that you have had
knowledge of the CeCILL license and that you accept its terms.

Full license terms and conditions can be found at http://www.cecill.info/licences/Licence_CeCILL_V2.1-
en.html.

1.5 Authors

In alphabetical order:

• Benoit BOCCARD
• Mehdi DOGGUY
• Thomas HAMEL
• Rémi PALANCHER
• Cécile YOSHIKAWA

Puppet-HPC reference documentation 4

http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.html
http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.html


Chapter 2

Overview

Puppet-HPC is a full Puppet-based software stack designed to easily deploy HPC clusters. Puppet is
a popular open-source configuration management tool. The main goal of Puppet-HPC is to provide a
common generic configuration management system that can be used effortlessly across multiple HPC
clusters and organizations.
The Puppet-HPC software stack notably provides:

• Many generic Puppet modules for all technical components required on a HPC cluster.
• Defined data model for representing the description of an HPC cluster based on Hiera.
• Software patterns and code conventions conform to latest Puppet community standards.
• Tools to easily deploy and manage the configuration with high-scalability requirements.

The Puppet-HPC software architecture clearly separates code from data. This way, the code can be generic
while the data can provide all specific contextual information. This has many advantages:

• The code base can be re-used and the development effort is shared.
• The same code is run on many different environments, it is therefore more tested and more reliable.
• The code can be easily tested on a small testing environment even if the data is different from the

production environment.

All details about the software architecture of Puppet-HPC are documented in the Software Architecture
chapter of this document.
Puppet-HPC is developed and actively maintained by the CCN-HPC (Centre de Compétences Nationales
en High Performance Computing) of EDF (Électrité de France), one of the largest worldwide producers of
electricity. The software is used to deploy and maintain the configuration of the largest HPC cluster in the
company.
Puppet-HPC is open-source software and it is licensed under the terms of GPLv2+. Any external contri-
bution is very welcome! It should be made under the form of a pull request or an issue creation on the
project GitHub repository. Please refer to the Development Guidelines chapter for hints on doing awesome
patches.

5

http://www.puppet.com
https://docs.puppet.com/hiera/
https://www.edf.fr
https://github.com/edf-hpc/puppet-hpc


Chapter 3

Software architecture

3.1 Pattern

Puppet-HPC is based on the three following tools and principles:

• facter is used to report per-node facts. Moreover, some facts specific to the HPC context are used
to convey the global information about the cluster that needs to be known when running Puppet on a
node. These facts are implemented in the hpclib module.

• hiera is used to look up data. This tool helps separating site-specific or cluster-specific data from
Puppet code. Specific data are excluded from Puppet-HPC, being kept, versioned and maintained in
a separate internal repository. The cluster description it contains should follow certain rules though.
These rules are detailed below in the Cluster Definition part.

• The Roles/Profiles pattern has been used to design the Puppet-HPC code. It is organized in different
levels of abstraction:

– Roles, which represent the business logic. A node includes one role, and one only. Each role lists
one or more profiles.

– Profiles, which represent the implementation of technical functionalities. A profile includes and
manages modules to define a logical technical stack.

– Modules, which are the elementary technical blocks. Modules should only be responsible for man-
aging aspects of the component they are written for and should be as generic as possible.

Regarding the Roles/Profiles pattern, it is a common pattern in Puppet code organization. This pattern is
explained in details in this presentation: https://puppet.com/presentations/designing-puppet-rolesprofiles-
pattern

node

role

profiles

modules

resources

hiera

co
d
e

d
a
ta

1

n

n

n

Figure 3.1: Code and data separation with roles and profiles pattern

6

https://puppet.com/presentations/designing-puppet-rolesprofiles-pattern
https://puppet.com/presentations/designing-puppet-rolesprofiles-pattern


CHAPTER 3. SOFTWARE ARCHITECTURE

One of the interesting aspects of the Roles/Profiles pattern is that modules should be as generic as possible.
Whenever it is possible, external community modules should be used. They should come from a reliable
source: distribution package or the Puppet Forge. In any case, external community modules should be
properly reviewed.

3.2 Hiera layers

Hiera is a software designed to manage a repository of data formatted in key/value pairs. The key is
the parameter name. The values can be of various types: strings, numbers, booleans, hashes or arrays.
Puppet-HPC requires to use the default Hiera YAML backend, therefore the data is stored in YAML files.
Hiera is able to look up data out of a hierarchy - hence its name - of layers and manage overrides. This
feature, combined with layers properly ordered by genericity levels, allows to define a maximum number of
parameters once for multiple clusters and organization. The parameters are overridden in more specialized
layers only when necessary. The following diagram illustrates the look up logic of a parameter foo into an
example of a simplified hierarchy:

common

orgA

clusterY clusterZ

role1 role3 role4

orgB

clusterX

role1 role2

foo: alpha

gamma

foo: beta

foo: gamma

foo: epsilon foo: zeta

epsilon beta alpha zeta

o
rg
A

cl
u
st
e
rX

ro
le
1

o
rg
A

cl
u
st
e
rX

ro
le
2

o
rg
A

cl
u
st
e
rY

ro
le
1

o
rg
B

cl
u
st
e
rZ

ro
le
3

o
rg
B

cl
u
st
e
rZ

ro
le
4

role

cluster

organization

common

H
ie

ra
 l
a
y
e
rs

Figure 3.2: Simplified Hiera tree with specialization layers

The typical Hiera layers to use with Puppet-HPC are the following:

• %cluster_name/roles/%puppet_role

• %cluster_name/cluster

• %cluster_name/network

• organization

• common

The common layer is directly provided by Puppet-HPC with the YAML file hieradata/common.yaml. The
upper layers are specific to an organization or a cluster, they must be defined in the internal repository as
it’s documented in the next section. Network data is separated in a specific file (network.yaml) only to
keep the cluster YAML file readable.
The hierarchy (with all its layers) is setup in the hiera.yaml configuration file. An example of this file is
provided with Puppet-HPC under the path examples/privatedata/hiera.yaml.

3.3 Internal repository

Puppet-HPC can not be used only on its own, it must be configured for a specific site and a specific cluster.
It is recommended to work with an additional internal repository that will contain all specific data that can
not be published on GitHub.

Puppet-HPC reference documentation 7

https://forge.puppet.com/
https://docs.puppet.com/hiera/


CHAPTER 3. SOFTWARE ARCHITECTURE

role

profiles

modules organization

co
d

e

h
ie

ra
 la

y
e
rs

common

cluster

network/roles

Puppet-HPC

Internal repository

private filesprivate
modules
private

modules

Figure 3.3: Combination of Puppet-HPC with an internal repository

The content and structure of this internal repository is explained below:

• files contains any configuration file that needs to be stored internally and that can be used as it is
in a cluster configuration. It can be, for example , SSL certificates, SSH host keys, etc. If the content
of these files is sensitive, they should be encrypted.

• hieradata contains all the site-specific and cluster-specific data necessary to configure a cluster with
Puppet-HPC.

• puppet-config includes some Puppet configuration files to use with a specific cluster such as puppet.conf,
hiera.yaml.

For each of these three directories, it is recommended to have a subdirectory per cluster being configured
with Puppet-HPC.

3.4 External dependencies

Puppet-HPC provides a set of Puppet modules but also relies on some Puppet external community modules
that can be considered as dependencies. The full list of these modules is:

• puppetlabs-stdlib

• puppetlabs-concat

• puppetlabs-apache

• puppetlabs-apt

• arioch-keepalived

• herculesteam-augeasproviders-core

• puppet-archive

• puppet-collectd

• saz-rsyslog

• yo61-logrotate

It is also strongly recommended to install the eyaml utility in order to encrypt sensitive data (such as
passwords) inside the Hiera YAML files.

3.5 Genericity levels

The use of the Roles/Profiles pattern enables to control the level of genericity of each element of a Puppet
configuration code base. Here are the genericity levels defined for all the components in the Puppet-HPC
project:

Puppet-HPC reference documentation 8

https://forge.puppet.com/puppetlabs/stdlib
https://forge.puppet.com/puppetlabs/concat
https://forge.puppet.com/puppetlabs/apache
https://forge.puppet.com/puppetlabs/apt
https://forge.puppet.com/arioch/keepalived
https://forge.puppet.com/herculesteam/augeasproviders
https://forge.puppet.com/puppet/archive
https://forge.puppet.com/puppet/collectd
https://forge.puppet.com/saz/rsyslog
https://forge.puppet.com/yo61/logrotate
https://github.com/TomPoulton/hiera-eyaml


CHAPTER 3. SOFTWARE ARCHITECTURE

• Roles: The code part of the roles is fully generic as it consists into one manifest (located under path
puppet-config/cluster/roles/manifests/init.pp) which simply extract from Hiera the list of
profiles included in the role. However, the name of the roles and the list of profiles are cluster specific
due to technical properties of Puppet-HPC. This point is explained further in the roles section.

• Profiles are HPC specific and are highly related to the way Scibian HPC clusters are modeled. Never-
theless they can be reused from one cluster to the other. Their structure should follow the reference
architecture defined in the Scibian HPC cluster installation guide.

• Modules are fully generic. They support multiple distributions and can even be used outside of the
HPC clusters context when relevant.

As stated in the Hiera layers section, the Hiera repository is composed of multiple layers of datasets
ordered by genericity levels. Then, each layer of the hierarchy has it own genericity level depending on its
specialization.
This diagram gives a quick glance summary of the genericity levels for each element of the Puppet-HPC
stack:

role

profiles

modules

organizationco
d
e

h
ie

ra
 la

y
e
rs

common

cluster

network/roles
fully generic

Organization specific

Scibian HPC clusters specific

Cluster specific

Figure 3.4: Stack components genericity goals

3.6 Roles

As previously stated in the pattern section, a node has exactly one role representing its business logic, a
role being nothing more than a set of profiles. By design, all machines sharing the same role have the same
set of profiles. In other words, if it is necessary to apply a different set of profiles to different machines,
they must have different roles
In Puppet-HPC, the node-to-role association is set using a custom fact puppet_role provided by the
hpclib module. The fact actually extracts the role name out of the hostname of the node, using the
following pattern:
<prefix><role><id>

Where:

• <prefix> is the prefix of the cluster name (as provided by Hiera),
• <role> is the role name,
• <id> is a set of consecutive digits.

For example, on a cluster whose prefix is foo, the role names extracted from the following hostnames are:

• foobar1: bar
• foocompute001: compute
• fooservice2boot001: service2boot

This fact is then used in the Hiera layers definitions to get a role specific layer. The parameters values defined
in this layer are specific to the nodes having this role. This role specific layer of the Hiera repository is primar-
ily designed to set the list of profiles associated to the role, under the generic profiles parameter name. As
example, here is a possible value of this parameter in file <privatedata>/hieradata/<cluster_name>/roles/cn.yaml:

Puppet-HPC reference documentation 9

https://github.com/edf-hpc/scibian-hpc-install-guide


CHAPTER 3. SOFTWARE ARCHITECTURE

profiles:
- profiles::cluster::common
- profiles::network::base
- profiles::dns::client
- profiles::access::base
- profiles::ntp::client
- profiles::ssmtp::client
- profiles::jobsched::exec
- profiles::openssh::server
- profiles::environment::base
- profiles::auth::client
- profiles::metrics::collect_base
- profiles::log::client

This parameter is extracted from the Hiera repository by the fully generic main manifest of roles module
puppet-config/cluster/roles/manifests/init.pp:
class roles {

hiera_include(’profiles’)
}

In order to work as expected, this mechanism has the following requirements:

• All nodes must follow this naming convention.
• The prefix of the cluster name must be set with cluster_prefix parameter at the cluster level in the

Hiera repository.
• The profiles parameter must be defined at the role specific layer of the Hiera repository, for all the

possible roles.

This diagram gives a summary of this node/role/profiles associations logic:

foobar01 foobaz03

init.pp
manifestro

le
s

m
o
d

u
le

common

org

cluster

roles/bar roles/baz

cluster_prefix: foo

profiles:
- epsilon
- gamma

profiles:
- alpha
- beta

h
ie

ra
 la

y
e
rs

puppet_role
custom fact

h
p

cl
ib

m
o
d

u
le

cluster_prefix?

profiles?

profiles:
 - alpha
 - beta

profiles:
 - epsilon
 - gamma

puppet_role: bar puppet_role: baz

Figure 3.5: Node, role and profiles associations mechanism

3.7 Cluster definition

Puppet-HPC defines a full data model to represent a cluster architecture and its main parameters. In order
to integrate seemlessly with Puppet, the data model is based on Hiera YAML files. This data model is
fully documented in this section.

3.7.1 Main shared parameters

Some parameters must be defined at the cluster level of the Hiera hierarchy. These variables are not
associated to a unique profile and are aimed to be reused directly several times in Hiera or in puppet

Puppet-HPC reference documentation 10



CHAPTER 3. SOFTWARE ARCHITECTURE

profiles.

• cluster_name: The complete name of the cluster. Can be used, for example, in the slurm configura-
tion.

• cluster_prefix: The prefix used for all the hostnames in the cluster. Generally it will be composed
of 2 or 3 letters ("gen" for a cluster named "generic", for example).

• private_files_dir: The directory where all the files copied by Puppet on the machines are stored.
These files can be encrypted or not. It can be a shared directory between all the nodes, or an http
export if the hpclib::hpc_file resource is used.

• domain: The domain name used across all the machines. Used in particular by the bind module.
• user_groups: Array of user groups authorized to connect and submit jobs to the cluster.
• cluster_decrypt_password: General password used by the hpclib module to decrypt encrypted files

before copying them on the machines. This variable is usually itself encrypted using e-yaml.

3.7.2 Network definitions

Topology

The network topology is defined at the cluster level of the Hiera hierarchy. This means it is common to
all nodes.
## Network topology of the cluster
net::administration::ipnetwork: ’172.16.0.0’
net::administration::netmask: ’255.255.248.0’
net::administration::prefix_length: ’/21’
net::administration::broadcast: ’172.16.7.255’
net::lowlatency::ipnetwork: ’172.16.40.0’
net::lowlatency::prefix_length: ’/21’
net::management::ipnetwork: ’172.16.80.0’
net::management::netmask: ’255.255.240.0’
net::management::broadcast: ’172.16.95.255’
net_topology:

’wan’:
’name’: ’WAN’
’prefixes’: ’wan’
’ipnetwork’: ’172.17.0.0.0’
’netmask’: ’255.255.255.0’
’prefix_length’: ’/24’
’gateway’: ’172.17.0.1’
’broadcast’: ’172.17.0.255’
’ip_range_start’: ’172.17.0.1’
’ip_range_end’: ’172.17.0.254’
’firewall_zone’: ’wan’

’administration’:
’name’: ’ADM’
’prefixes’: ’’
’ipnetwork’: ’172.16.0.0’
’netmask’: ’255.255.248.0’
’prefix_length’: ’/21’
’gateway’: ’172.16.0.1’
’broadcast’: ’172.16.7.255’
’ip_range_start’: ’172.16.0.1’
’ip_range_end’: ’172.16.7.254’
’firewall_zone’: ’clstr’
’pool0’:

’ip_range_start’:
’172.16.0.1’

’ip_range_end’:
’172.16.5.254’

’pool1’: # IP reserved for the discovery process
’ip_range_start’:

Puppet-HPC reference documentation 11



CHAPTER 3. SOFTWARE ARCHITECTURE

’172.16.6.1’
’ip_range_end’:

’172.16.7.254’
’lowlatency’:

’name’: ’IB’
’prefixes’: ’ib’
’ipnetwork’: ’172.16.40.0’
’netmask’: ’255.255.248.0’
’prefix_length’: ’/21’
’gateway’: ’’
’broadcast’: ’172.16.47.255’
’ip_range_start’: ’172.16.40.1’
’ip_range_end’: ’172.16.47.254’
’firewall_zone’: ’clstr’

’management’:
’name’: ’MGT’
’prefixes’: ’mgt’
’ipnetwork’: ’172.16.80.0’
’netmask’: ’255.255.240.0’
’prefix_length’: ’/20’
’gateway’: ’’
’broadcast’: ’172.16.95.255’
’ip_range_start’: ’172.16.80.1’
’ip_range_end’: ’172.16.95.254’
’firewall_zone’: ’clstr’

’bmc’:
’name’: ’BMC’
’prefixes’: ’bmc’
’ipnetwork’: ’172.16.80.0’
’netmask’: ’255.255.248.0’
’prefix_length’: ’/21’
’gateway’: ’’
’broadcast’: ’172.16.87.255’
’ip_range_start’: ’172.16.80.1’
’ip_range_end’: ’172.16.87.254’
’firewall_zone’: ’clstr’

The bmc network connects all the management cards (bmc, imm, etc . . . ). The management network
connects the servers who must access these management devices. That is the reason why they share an
IP networks settings and ranges.

Bonding

Some network interfaces are bonded together for load balancing and high availability. The bonding definition
is done in Hiera. If the bonding is uniform (i.e. same bond interface on same slave interfaces) between
nodes, this can be done at the cluster level. In case of differences between nodes, it must be done higher
in the hierarchy (role or node).
network::bonding_options:

’bond0’:
’slaves’:

- ’eth0’
- ’eth1’

’options’: ’mode=active-backup primary=eth0’
’bond1’:

’slaves’:
- ’eth2’
- ’eth3’

’options’: ’mode=active-backup primary=eth2’

This variable from Hiera uses Auto Lookup to be passed to the network class.

Puppet-HPC reference documentation 12



CHAPTER 3. SOFTWARE ARCHITECTURE

Bridges

When using a machine as a physical host for VMs, it is often necessary to setup bridge interfaces. These
bridge interfaces will be configured in the master_network hash with the right IP addresses. The physical
device will be added automatically without an IP address. It is possible to create a bridge above a bonding
interface.
network::bridge_options:

’br0’:
’ports’:

- ’bond0’
’description’: ’Administration network bridge.’

’br2’:
’ports’:

- ’bond2’
’description’: ’WAN network bridge’

3.7.3 Node definitions

Master Network

Nodes are listed in a Hiera hash called master_network. It must be defined at the at the cluster level
of the Hiera hierarchy, but for readability reasons it is in a separate network.yaml file. Each key defines
one node and its network configuration. Each node is described by a hash containing its fully qualified
hostname and the networks attached to it. Each network must have a name corresponding to the ones
used in the net_topology hash described in the topology section.

master_network: 
  genmisc1:
    fqdn: 'genmisc1.somedomain'
    networks:
      wan:
        'IP':       '172.17.42.45'
        'device':   'bond1'
        'hostname': 'extgenmisc1'
   ....  

net_topology:
       'wan':
          'name':           'WAN'
          'prefixes':       'wan'
          'ipnetwork':      '172.17.0.0.0'
          'netmask':        '255.255.255.0'
          'prefix_length':  '/24'
          'gateway':        '172.17.0.1'
          'broadcast':      '172.17.0.255'
          'ip_range_start': '172.17.0.1'
          'ip_range_end':   '172.17.0.254'
          'firewall_zone':  'wan'

Figure 3.6:

These values can be defined for each network:

• MAC address (DHCP_MAC): The MAC address of the physical device connected to the network. It is
used to build the dhcpd server configuration.

• Interface device (device): The device where the configuration must be applied, this means that with
a bonded interface, the configuration must be applied on the bond interface. So it is not necessary
that the physical interface is attached to the MAC address quoted above. The interfaces enslaved to
the bond interfaces can be omitted from this configuration.

• Hostname (hostname): The hostname of the machine on the considered network.
• IPv4 Address (IP): The IPv4 address of the machine on the considered network. The netmask comes

from the net_topology variable.
• External config (or not) : External configuration means the interface is configured on the system but

should not be setup by the Puppet-HPC configuration. It is useful if another subsystem sets up the net-

Puppet-HPC reference documentation 13



CHAPTER 3. SOFTWARE ARCHITECTURE

work interface: VPN, libvirt. . . On Debian, it means the interface is not added to /etc/network/interfaces.
This boolean can take the value true or false and is considered false if omitted

Example:
master_network:

genmisc1:
fqdn: ’genmisc1.somedomain’
networks:

administration:
’DHCP_MAC’: ’52:54:00:ba:9d:ac’
’IP’: ’172.16.2.21’
’device’: ’bond0’
’hostname’: ’genmisc1’

lowlatency:
’IP’: ’172.16.42.21’
’device’: ’ib0’
’hostname’: ’llgenmisc1’

management:
’IP’: ’172.16.88.21’
’device’: ’bond0’
’hostname’: ’mgtgenmisc1’

bmc:
’DHCP_MAC’: ’40:F2:E9:CD:53:CE’
’IP’: ’172.16.82.21’
’hostname’: ’bmcgenmisc1’

wan:
’IP’: ’172.17.42.45’
’device’: ’bond1’
’hostname’: ’extgenmisc1’

This example defines one node (genmisc1) with the following configuration:

• DHCP

– 52:54:00:ba:9d:ac genmisc1 172.16.2.21

– 40:F2:E9:CD:53:CE mgtgenmisc1 172.16.82.21

• Network configuration on the node

– bond0 172.16.2.21 255.255.248.0 External Config: false
– bond0 172.16.88.21 255.255.248.0 External Config: false
– bond1 172.17.42.45 255.255.255.0 External Config: false

• DNS and Hosts

– genmisc1 172.16.2.21

– extgenmisc1 172.17.42.45

All lists are optional, so it is possible to define an element that just defines a Host/DNS configuration (for
virtual IP addresses for instance):
master_network:

genmisc:
fqdn: ’genmisc.somedomain’
networks:

administration:
’IP’: ’172.16.2.20’
’hostname’: ’genmisc’

management:
’IP’: ’172.16.82.20’
’hostname’: ’mgtgenmisc’

wan:
’IP’: ’172.17.42.44’
’hostname’: ’extgenmisc’

Puppet-HPC reference documentation 14



CHAPTER 3. SOFTWARE ARCHITECTURE

3.8 Deployment

Scibian clusters use a simple puppet apply command with a set of modules, manifests and data. Puppet-
HPC is not designed to work in a traditional "Puppet server" environment, as it must be used in a very
simple system environment, like a post installation script inside Debian Installer.

3.8.1 Push and apply scripts

Two tools have been developed in order to apply the puppet-hpc configuration on the nodes of a cluster.
One of the tools, "push" the entire configuration (modules, Hiera data, files) in a shared space, and another
one is aimed to apply the configuration on the nodes.

Central Storage
<env>/<version>/puppet-config-environment.tar.xz
modules_generic
modules_private
hieradata/generic
hieradata/private
manifests
environment.conf

<env>/<version>/files
<env>/<version>/hiera.yaml
<env>/<version>/puppet.conf
keys.tar.xz
keys/private_key.pkcs7.pem
keys/public_key.pkcs7.pem

Dev/Admin
Operating System
/usr/share/puppet/modules

puppet-hpc git
puppet-config/cluster
puppet-config/modules
puppet-config/modules_3rdparty
puppet-config/manifests
hieradata

hpc-privatedata git
hieradata
files
hiera.yaml
puppet.conf

Node
/etc/puppet/environments/<env>
modules_generic
modules_private
hieradata/generic
hieradata/private
manifests
environment.conf

/etc/puppet/secure
keys/private_key.pkcs7.pem
keys/public_key.pkcs7.pem

hpc-config-push hpc-config-apply

/etc/puppet
hiera.yaml
puppet.conf

Figure 3.7: How the push and apply scripts work

hpc-config-push

This script merge all the data necessary to apply the puppet configuration in one archive and push it into
a shared storage:

• Puppet modules installed in operating system via packages
• Puppet modules from the puppet_hpc git repository, including profiles
• Optionally other puppet modules
• Configuration files for Puppet and Hiera
• YAML files for Hiera: generic ones from puppet-hpc git repository and specific ones from the internal

repository
• Files to copy on nodes from the internal repository

Two methods can be used to push the data: * posix: simply copies the tarball into a shared directory on
all nodes (a nfs export, for example) * s3: uses the Amazon S3 RESTful API to send data on a compatible
storage (Ceph Rados Gateway, for example)
The script can manage several Puppet environments with the -e, –environment parameter. A default
environment can be defined in the configuration file.
The file /etc/hpc-config/push.conf allows to configure all the options for this script.
Please refer to hpc-config-push(1) man page for full usage documentation.

hpc-config-apply

This downloads the Puppet configuration (modules and hieradata) as a tarball and installs it as an envi-
ronment in /etc/puppet. Private data files are not downloaded with the configuration, instead they are
available from the central storage and are directly downloaded from the Puppet modules. If eyaml is used,
this script needs a source to download the keys used to encrypt and decrypt data.
The command puppet apply is executed afterward with the environment previously untarred.

Puppet-HPC reference documentation 15

https://docs.puppet.com/puppet/3.7/environments.html
https://github.com/edf-hpc/puppet-hpc/blob/master/doc/manpages/hpc-config-push.md


CHAPTER 3. SOFTWARE ARCHITECTURE

The configuration file indicating where to download the files is located in /etc/hpc-config.conf.
Please refer to hpc-config-apply(1) man page for full usage documentation.

3.8.2 Packages

These two scripts are provided in the Scibian distribution as Debian packages:

• hpc-config-apply

• hpc-config-push

3.9 Sensitive data encryption

The configuration of an HPC cluster is necessarily composed of various sensitive data: passwords, keys,
sensitive parameters and so on. These data must not be published in a clear state into SCM repositories
potentially available to third parties, in which case the security of the cluster and the organization would
not be ensured. On the other hand, it is convenient to save these data into SCM repositories since changes
are tracked and rollbacks are possible. The Puppet-HPC stack provides a cryptography model to encrypt
the sensitive data and securily save them in the internal SCM repository.

3.9.1 Encryption keys

There are 2 encryption keys involved in Puppet-HPC :

• an asymmetric PKCS7 key pair for encrypting values in the cluster-specific layers of the Hiera repository,
based on the Eyaml software.

• a symmetric AES key for encrypting files. The encrypted files are stored into the directory named files
of the internal repository. This key is used in combination with the clara enc plugin for managing
encrypted files.

These keys are specific to a cluster, each cluster has its own set of encryption keys. The keys must be
generated at the beginning of the cluster installation.
Since these keys protect all the sensitive data of a cluster, they must be very securely manipulated them-
selves. They are mutually encrypted before being saved into the internal SCM repository, as shown in this
illustration:

cluster_decrypt_password: ***

PKCS7 keysAES key

encrypted tarball
keys.tar.xz.enc

internal repository

generate

encrypt

cluster.yaml files/

For files
encryption

For hiera eyaml
encryption

Figure 3.8: Mutual encryption of internal keys

Puppet-HPC reference documentation 16

https://github.com/edf-hpc/puppet-hpc/blob/master/doc/manpages/hpc-config-apply.md
https://github.com/edf-hpc/clara


CHAPTER 3. SOFTWARE ARCHITECTURE

The AES key is published in the cluster-specific layer of the Hiera repository with parameter cluster_decrypted_password,
encrypted with eyaml PKCS7 public key. A tarball keys.tar.xz with eyaml PKCS7 private and public
keys is built and encrypted with the AES key. This encrypted tarball is published in the directory files of
the internal repository.

3.9.2 Key propagation service

When running on a node, Puppet-HPC needs to extract many encrypted parameters from the Hiera
repository. The eyaml PKCS7 private key is required to decrypt these parameters. A key propogation
service is in charge of securely distributing this sensitive key to the nodes on the network. The following
diagram represents the deployment process of the eyaml keys using this propagation service:

hpc-config-apply

keys_source 

get unencrypted
keys tarball

profiles

modules

public_param: value

hiera

secret_param: ***eyaml
library

extract tarball

run
puppet-apply

http(s):// xor file:///

1

2

3

4

0 eyaml
PKCS7 keys

node

roles

Figure 3.9: Deployment of eyaml keys with propagation service

On the node, the keys are gathered by the hpc-config-apply utility at the early stage of its run, in the
form of a decrypted tarball containing the eyaml PKCS7 keys. The script is alternatively able to access the
keys from a POSIX filesystem, this is notably used during the keys bootstrap procedure but not intended
afterwhile. Its primary use mode is to download the tarball from the key propagation service.
Technically speaking, this service is an HTTP server listening on a specific TCP port. This HTTP server
only serves a decrypted version of the tarball containing the eyaml PKCS7 keys. This HTTP server is
tightly coupled to a firewall which ensures incoming requests respect the following rules:

• Received on the network interface attached to the cluster internal administration network.
• TCP source port is strictly less than 1024, to make sure it is sent by a process run by root superuser.

The utility hpc-config-apply explicitely sets the source TCP port of its outgoing connection to meet
the requirements and respect both conditions.
The tarball content is then extracted to standard eyaml configuration paths before running Puppet, so that
eyaml library can decrypt Hiera parameters transparently on the nodes.
The encrypted tarball located in the files directory is actually used only to deploy this key propogation
service. After the initial keys bootstrap, the other nodes expect this key propogation service to be available
to download the eyaml keys.

Puppet-HPC reference documentation 17



CHAPTER 3. SOFTWARE ARCHITECTURE

3.9.3 Sensitive files decryption

This diagram illustrates the deployment process of the encrypted files on the nodes:

hpc-config-apply

decrypt($url,
        $password)

get encrypted file

profiles

generic
modules

url: $private_files_dir/file.enc

hiera

cluster_decrypt_password: ***
eyaml
library

run
puppet-apply

hpclib module

private_files_dir

call

unencrypted 
content

unencrypted file

http(s):// or
file:///  

1

23

5

7

0

eyaml
PKCS7 keys

node

4

6

Figure 3.10: Automatic decryption of sensitive files

The profiles and the generic modules expect to find the AES file encryption key in Hiera under the parameter
name cluster_decrypt_password and the URI to the encrypted file in the directory files of the internal
repository. As previously stated in the Encryption keys section, this AES key is encrypted with PKCS7
keys. It is therefore decrypted on-the-fly by the eyaml library.
The generic modules call the decrypt() function of the hpclib module. This function downloads the file
at the URI provided in parameter and decrypts it with the given key. With Puppet-HPC, all private files
are supposed to be located in the private_files_dir, as documented in the main shared parameters
section. The decrypt() function internally calls the hpc_source_file() function of the same module
which supports private_files_dir URI schemes on either HTTP(s) servers or POSIX file systems.

3.9.4 Bootstrap procedure

This section document the steps to follow in order to bootstrap Puppet-HPC encryption mechanisms and
deploy the first keys propogation service on a new cluster.
First, generate eyaml PKCS7 key pair:
# mkdir /etc/puppet/secure
# cd /etc/puppet/secure/
# eyaml createkeys
[hiera-eyaml-core] Created key directory: ./keys
Keys created OK
# chown -R puppet:puppet /etc/puppet/secure/keys
# chmod -R 0500 /etc/puppet/secure/keys
# chmod 0400 /etc/puppet/secure/keys/*.pem

Generate random 256 bits AES key:

Puppet-HPC reference documentation 18



CHAPTER 3. SOFTWARE ARCHITECTURE

# openssl rand -base64 32

The output of this command must be set in cluster_decrypted_password to the cluster layer of the
Hiera repository:
# eyaml edit hieradata/<cluster>/cluster.eyaml

Add the following content:
cluster_decrypt_password: DEC::PKCS7[<AES KEY>]!

Where:

• <AES KEY> is the random 256 bits key.

Generate a temporary tarball of the eyaml PKCS7 keys, encode it with openssl and add it to the files
directory of the internal repository:
# cd /etc/puppet/secure
# tar cJf /tmp/keys.tar.xz keys
# mkdir -p <internal repository>/files/<cluster>/eyaml
# cd <internal repository>/files/<cluster>/eyaml
# openssl aes-256-cbc -in /tmp/keys.tar.xz -out keys.tar.xz.enc -k <AES KEY>

Where:

• <internal repository> is the directory that contains the clone of the internal repository.
• <cluster> is the name of the cluster.
• <AES KEY> is the random 256 bits key.

At this stage, all keys are now stored encrypted in the internal repository and the PKCS7 are available
locally in the standard eyaml paths.
The key propagation service is not available on the network yet. The hpc-config-apply utility can run
with an alternate key_source to configure the first key propagation service:
# hpc-config-apply --keys-source=file:///tmp

Once the first key propagation service is available on the cluster administration network, the temporary
decrypted tarball must be removed:
# rm /tmp/keys.tar.xz

Finally, the hpc-config-apply utility can run with its default configuration:
# hpc-config-apply

Starting from this point, there must always be at least one key propagation service available on the network
for Puppet to run properly.

Puppet-HPC reference documentation 19



Chapter 4

Development Guidelines

This chapter gives some guidelines to help contributing to Puppet-HPC source code development. Addi-
tionally to these guidelines, this chapter also set some rules to follow, in order to make sure the code base
stay consistent in the long term.
Puppetlabs, the company who maintain Puppet software, provides a reference style guide available online
at this URL: https://docs.puppet.com/guides/style_guide.html
Puppet-HPC source code must respect the conventions defined in this reference style guide. All the
guidelines defined in this chapter aim to be complementary to this reference style guide. In case of conflict
between the 2 documents, the rules published in the reference style guide take precedence over the rules
defined in this chapter.
All portions of code that do not fully respect those rules must be considered as bugs and must be tracked
as such.

4.1 Main rules

There are few goals and principles that rule the overall architecture of Puppet-HPC code base:

• Wise genericity: respect genericity goals but stay practical.
• Simple profiles: only parameters that could not be defined in other layers of the stack.
• Minimized hieradata: only useful parameters defined at the right level.
• Convention over configuration: prefer clearly defined conventions and specifications rather than

systematic configurability and overridability.

The following sections fully explain in details how to achieve those principles in every components of the
stack.

4.2 Directories structure

The sources root directories contains the following sub-directories:

• conf/: examples configuration files of the scripts
• debian/: Debian packaging related files
• doc/: sources of the documentation
• examples/: examples of code for reference and learning purposes
• hieradata/: common down-most level of hieradata
• init/: init system configuration files for the scripts
• puppet-config/: all Puppet manifests

20

https://docs.puppet.com/guides/style_guide.html


CHAPTER 4. DEVELOPMENT GUIDELINES

– cluster/: definitions of profiles
– manifests/: core manifests with nodes definitions
– modules/: generic modules

• scripts/: deployment scripts

4.3 Language settings

The Puppet-HPC configuration uses the parser from Puppet < 4 (not the future parser). Modules must
not use constructs that are only available with the parser from Puppet 4 (ex: foreach). Compatibility
with the future parser is encouraged though.
It is assumed that the manifest will be applied with the following setting in puppet.conf:
stringify_facts=false

This setting permits facts to define advanced data structures such as hashes and arrays.

4.4 Hieradata

The hieradata is a database of parameters. As stated in the Hieradata levels section of the software
architecture chapter, the hieradata is a stack of levels, each upper level being more specific to a smaller
context. The parameters must always be defined at the lowest possible level of the stack (ie. the most
generic). Obviously, if the parameter is defined in files below the cluster specific files, the parameter does
not have to be duplicated from cluster to cluster and the cluster configuration is simpler.
There are multiple types of parameters in Hiera. In the first sub-section, the various types are defined.
Then, all details and rules for each type are given.

4.4.1 Parameter types

The hieradata contains many parameters that can classified into four main categories:

• shared parameters: generic parameters used in several places accross hieradata, facts, functions and
profiles.

• simple parameters: parameters dedicated to a module or a profile.
• advanced parameters: complex structures providing either a set of configuration settings or resources

definitions to a profile.

The following schema represents how these various types of parameters can be used inside Puppet-HPC:

hieradata

shared
parameters

simple
parameters

advanced
parameters

profilesmodules

h
i
e
r
a
_
{
a
r
r
a
y
,
h
a
s
h
}
(
)

hiera*()

hiera()

au
to
lo
ok
up

interpolation

Figure 4.1: Parameters types and workflow

Puppet-HPC reference documentation 21



CHAPTER 4. DEVELOPMENT GUIDELINES

Full details are given in the following sub-sections.

4.4.2 Shared parameters

Shared parameters are generic parameters that are used several times in hieradata (using interpolation),
custom facts, custom parser functions and profiles. The shared parameters should be used wisely. They
should be used only where relevant to avoid clear duplication of data.
Their value must either be a string or an integer.
The shared parameters names can only contain letters and underscores. Ex:

• timezone

• slurm_master

All shared parameters required by Puppet-HPC must be defined in the common down most level of hi-
eradata. Some shared parameter cannot have a sane default value at this level though, eg. the domain
name. In this case, the value must clearly state it is wrong (ex: FROM_COMMON_LVL_CHANGEME). This way,
users can easily spot them and clearly figure out they must be overridden in upper levels of their private
hieradata.

4.4.3 Simple parameters

Strictly speaking, simple parameters are all parameters that are not of the other types of parameters (ie:
shared parameters, configuration set or resource definition).
Their value can be of any type: string, integer, boolean, array or hash.
A simple parameter must either be:

• a module public class auto-lookup parameter,
• or a profile parameter.

A module parameter must not be imported by a profile.
Module parameters names are necessarily prefixed by the public class, this is requirement for hiera. For
example, the parameter opt of the public class soft::server must be named soft::server::opt.
Profiles parameters rules are given in the profiles section.

4.4.4 Advanced parameters

Advanced parameters provide either provide a set of configuration settings or resource definitions.
Their value must either be a hash or an array.
Configuration sets must be imported by profiles using the hiera function hiera_array() and hiera_hash().
Unlike the hiera() function or hiera autoloopkups, these functions can merge the elements coming from
multiple levels of the hieradata. This is really convenient because all the configuration settings can be
defined at their highest level of genericity in the hieradata stack. This way, most settings can be defined
once for several clusters and the cluster specific hieradata levels only contain the cluster specific values.
This behaviour is illustrated in the following schema:

Puppet-HPC reference documentation 22

https://docs.puppet.com/puppet/latest/reference/function.html#hieraarray
https://docs.puppet.com/puppet/latest/reference/function.html#hierahash


CHAPTER 4. DEVELOPMENT GUIDELINES

hieradata

profiles::soft::conf:
  section1:
    paramA: value1o

rg

profiles::soft::conf:
  section2:
    paramB: value2

profiles::soft::conf:
  section2:
    paramB: value3cl

u
st
e
rX

cl
u
st
e
rY

profiles profiles::soft

profiles::soft::conf:
  section1:
    paramA: value1
  section2:
    paramB: value2

profiles::soft::conf:
  section1:
    paramA: value1
  section2:
    paramB: value3

clusterX clusterY

hiera_hash('profiles::soft::conf')

results

Figure 4.2: Merge behaviour of hiera advanced functions

4.4.5 Interpolation

Hiera support internal interpolation of parameters. This feature is really useful to help factorizing many
settings. Its usage is definitely recommended in Puppet-HPC but it must be limited to the following
parameters:

• Shared parameters,
• Standard facts,
• hpclib custom facts.

This implies it is not allowed to interpolate profile or module autoloopkup parameters. For example, this
is considered safe:
shared_parameter: value
profiles::soft::param: "%{hiera(’shared_parameter’)}"

However, the following two examples are considered unsafe in Puppet-HPC:
soft::param: value
profiles::soft::param: "%{hiera(’soft::param’)}"

profiles::soft::param: value
soft::param: "%{hiera(’profiles::soft::param’)}"

4.5 Modules

4.5.1 Dependencies

Puppet-HPC internal modules must be fully autonomous and must not depend to any other module except
on the stdlib external community module, hpclib and systemd internal modules. These modules do not
manage real resources (excepting the systemd public class). They mostly provide a set of usefull functions,
facts and defined types. Therefore, they can safely be considered as libraries for the other modules.
The special hpc_* internal modules are also exceptions: they can depend on one (and only one) other
external community module (ex: hpc_ha depends on keepalived). Those modules are actually wrappers

Puppet-HPC reference documentation 23

https://docs.puppet.com/hiera/3.2/variables.html
https://forge.puppet.com/puppetlabs/stdlib


CHAPTER 4. DEVELOPMENT GUIDELINES

over other external community modules in order to give an high-level interface both more practical and
specialized for the HPC clusters specific needs to the profiles without modifying the structure of the
underlying module.

4.5.2 Classes inheritance

Modules are notably composed of a set of manifests containing classes. There are two types of classes:

• public classes: these classes can be called by the profiles and can receive arguments.
• private classes: these classes are called only by other classes from the same module. Generally, the

private classes do not receive arguments as they inherit the public classes and get access to all their
variables this way.

There must be a private class params for each public class. For example, there must be a private
software::params private class for a software public class. The params private class defines the
default values of the public class parameters, including its arguments. A public class must inherit of its
corresponding params class.
A public class should not manage any resource by itself. The resources must be delegated to the private
sub-classes. The resources must be grouped by sequentials deployment steps. A step must be managed
by a specific private class. The common steps are:

• install: install packages and files (including directories) required by the technical component.
• config: manage the configuration parameters of the technical component.
• service: manage the service of the technical component.

This list is not exhaustive and can be adapted to specific cases.

Note
There is generally some confusions to define whether some files are part of the install or the
config step. Considering the software component follow main rules of the FHS, a file under
/etc is part of the config step. It is part of the install step otherwise.

Each step must be managed by a specific private class. For example, software::install, software::config
and software::service. These private classes must be called sequentially by the public class, using or-
dering arrows delimited by anchors. Please refer to modules examples section for full examples.

soft::params

soft

params.pp

init.pp

soft::install

soft::config

soft::service

install.pp

config.pp

service.pp

manifests/

files hierarchy classes hierarchy

Figure 4.3: Files and classes hierarchies in a simple module

Puppet-HPC reference documentation 24

http://http://www.pathname.com/fhs/


CHAPTER 4. DEVELOPMENT GUIDELINES

soft::clientclient.pp

manifests/

files hierarchy classes hierarchy

server/

client/

soft::serverserver.pp

soft::server::paramsparams.pp

soft::server::installinstall.pp

soft::server::configconfig.pp

soft::client::paramsparams.pp

soft::client::installinstall.pp

soft::client::configconfig.pp

Figure 4.4: Files and classes hierarchies in a complex module

4.5.3 Parameters

Classification

Modules are controlled by a large set of parameters which defines their behavior, resources settings, paths
and so on. Each parameter is a variable defined in a public class of a module.
There are two levels of parameters visibility:

• public parameters whose values can be set by Hiera auto-lookup or by profiles through the arguments.
• private parameters which are defined in the public class of the module. These parameters generally

store the result of a function from stdlib or hpclib modules based on the values of some other
public parameters. The variable name of these parameters must be prefixed by an underscore _ (ex:
$_config_options).

There are two categories of parameters:

• activation parameters, detailed further in the following sub-section.
• data parameters. As their name suggest, they provide data the public class in order to control

resources content and metadata. Many conventions have been defined for data parameters, detailed in
the data parameters conventions sub-section.

Activation parameters

All public classes must have an activation parameter for each deployment step. These parameters must be
named <step>_manage where <step> is replaced by the name of the step. For example, if a public class
has 3 deployment steps install, service and config, there must be the following 3 public activation
parameters:

• install_manage

• service_manage

• config_manage

If the public class also manages packages, typically within the install step, there must also be a packages_manage
parameter.
These parameters are all booleans.

Puppet-HPC reference documentation 25



CHAPTER 4. DEVELOPMENT GUIDELINES

The activation parameter control the deployment steps activation ie. whether the resources of the corre-
sponding step are actually managed by the public class or not.

Data parameters conventions

Data parameters are basically all other parameters except activation parameters. As previously stated in
the classification sub-section, the data parameters hold the content and meta-parameters of the resources.
Many data parameters are actually quite similar across modules. For these recurring parameters, several
name and type conventions have been defined in Puppet-HPC.
For install step:

• packages (array) is the list of packages to install.
• packages_ensure (string) is the expected state of the packages. Ex: latest or installed.

For service step:

• service_name (string) is the name of the managed service.
• service_ensure (string) is the expected state of the service. Ex: running or stopped.
• service_enable (boolean) defines if the service start at boot time.

For config step, where <file> is replaced by the a symbolic name representing the nature of the file (ex:
config):

• <file>_file (string), absolute file path of the file on the target system.
• <file>_options (hash), content of a configuration file with all its sections, parameters and values.

This hash is typically processed by the hpclib::print_config() function.
• <file>_enc (string), URL of encrypted source of the file, typically processed with the hpclib::decrypt()

function.
• default_file (string), absolute path to the configuration file path of the init-system service script or

description file. ex: /etc/default/service.
• default_options (hash), content of the default_file.

Type checking

Parameters types must be checked at the beginning of public classes code using validate_*() functions
of the stdlib module. The tests of parameters types must be conditioned by the activation parameters
of the steps they are involved. For example, the packages parameter type must be checked only if
packages_manage parameter is true.

4.5.4 Arguments

Public classes accept arguments. There must be arguments for every public parameters of a public class.
The values of these arguments must default to the variables inherited from the corresponding params class,
with 2 exceptions:

• When there is no sane possible default value, typically for security reasons (ex: password) or because
it highly depends on the context (ex: network domain). In this case, the arguments must be placed in
first positions in the arguments lists.

• For configuration structures. It is generally useful to combine settings given in arguments by profiles
and default settings coming from the params class using merge() and/or deep_merge() functions
from the stdlib module. This way, it becomes unnecessary to define all the parameters in the structure
in argument, the profile can simply gives to parameters to add or to override in the defaults. In this
case, the default values must of the argument be an empty hash or an empty array, depending its type.

Puppet-HPC reference documentation 26



CHAPTER 4. DEVELOPMENT GUIDELINES

4.5.5 Examples

This section contains two full examples of puppet module, one simple module with one public class and
another complex modules with two public classes.

Simple example

The simple module simply install packages and launch a service. The private class simple::config is a
no-op.
File README.md:
# simple

#### Table of Contents

1. [Module Description](#module-description)
2. [Setup](#setup)

* [What simple affects](#what-simple-affects)
* [Setup requirements](#setup-requirements)
* [Beginning with simple](#beginning-with-simple)

3. [Usage](#usage)
4. [Limitations](#limitations)
5. [Development](#development)

## Module Description

The module deploys simple stuff.

## Setup

### What simple affects

The module installs simple software with its configuration file and manages its
service.

### Setup Requirements

N/A

### Beginning with simple

N/A

## Usage

The simple module has only one public class named ‘simple‘. It can be easily
instanciated with its defaults argument:

‘‘‘
include ::simple
‘‘‘

## Limitations

This module is mainly tested on Debian, but is meant to also work with RHEL and
derivatives.

## Development

Patches and issues can be submitted on GitHub:
https://github.com/edf-hpc/puppet-hpc

File init.pp:

Puppet-HPC reference documentation 27



CHAPTER 4. DEVELOPMENT GUIDELINES

##########################################################################
# Puppet configuration file #
# #
# Copyright (C) 2014-2016 EDF S.A. #
# Contact: CCN-HPC <dsp-cspit-ccn-hpc@edf.fr> #
# #
# This program is free software; you can redistribute in and/or #
# modify it under the terms of the GNU General Public License, #
# version 2, as published by the Free Software Foundation. #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
##########################################################################

# Deploys simple stuff.
#
# @param install_manage Public class manages the installation (default: true)
# @param packages Array of packages to install (default:
# [’simple-package’])
# @param packages_manage Public class installs the packages (default: true)
# @param packages_ensure Target state for the packages (default: ’latest’)
# @param service_manage Public class manages the service state (default: true)
# @param service_name Name of the service to manage (default:
# ’simple-service’)
# @param service_ensure Target state for the service (default: ’running’)
# @param service_enable The service starts at boot time (default: true)
# @param config_manage Public class manages the configuration (default: true)

class simple (
$install_manage = $::simple::params::install_manage,
$packages_manage = $::simple::params::packages_manage,
$packages = $::simple::params::packages,
$packages_ensure = $::simple::params::packages_ensure,
$service_manage = $::simple::params::service_manage,
$service_name = $::simple::params::service_name,
$service_ensure = $::simple::params::service_ensure,
$service_enable = $::simple::params::service_enable,
$config_manage = $::simple::params::config_manage,

) inherits simple::params {

validate_bool($install_manage)
validate_bool($packages_manage)
validate_bool($service_manage)
validate_bool($config_manage)

if $install_manage and $packages_manage {
validate_array($packages)
validate_string($packages_ensure)

}

if $service_manage {
validate_string($service_name)
validate_string($service_ensure)
validate_bool($service_enable)

}

anchor { ’simple::begin’: } ->
class { ’::simple::install’: } ->
class { ’::simple::config’: } ->
class { ’::simple::service’: } ->
anchor { ’simple::end’: }

}

Puppet-HPC reference documentation 28



CHAPTER 4. DEVELOPMENT GUIDELINES

File params.pp:
##########################################################################
# Puppet configuration file #
# #
# Copyright (C) 2014-2016 EDF S.A. #
# Contact: CCN-HPC <dsp-cspit-ccn-hpc@edf.fr> #
# #
# This program is free software; you can redistribute in and/or #
# modify it under the terms of the GNU General Public License, #
# version 2, as published by the Free Software Foundation. #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
##########################################################################

class simple::params {

$install_manage = true
$packages_manage = true
$packages = [’simple-package’]
$packages_ensure = ’latest’
$service_manage = true
$service_name = ’simple-service’
$service_ensure = ’running’
$service_enable = true
$config_manage = true

}

File install.pp:
##########################################################################
# Puppet configuration file #
# #
# Copyright (C) 2014-2016 EDF S.A. #
# Contact: CCN-HPC <dsp-cspit-ccn-hpc@edf.fr> #
# #
# This program is free software; you can redistribute in and/or #
# modify it under the terms of the GNU General Public License, #
# version 2, as published by the Free Software Foundation. #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
##########################################################################

class simple::install inherits consul {

if $::simple::install_manage {

if $::simple::packages_manage {

package { $::simple::packages:
ensure => $::simple::packages_ensure,

}

}

}

}

File config.pp:
##########################################################################

Puppet-HPC reference documentation 29



CHAPTER 4. DEVELOPMENT GUIDELINES

# Puppet configuration file #
# #
# Copyright (C) 2014-2016 EDF S.A. #
# Contact: CCN-HPC <dsp-cspit-ccn-hpc@edf.fr> #
# #
# This program is free software; you can redistribute in and/or #
# modify it under the terms of the GNU General Public License, #
# version 2, as published by the Free Software Foundation. #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
##########################################################################

class simple::config inherits simple {

if $::simple::config_manage {

notice("nothing to configure in this example simple module")

}

}

File service.pp:
##########################################################################
# Puppet configuration file #
# #
# Copyright (C) 2014-2016 EDF S.A. #
# Contact: CCN-HPC <dsp-cspit-ccn-hpc@edf.fr> #
# #
# This program is free software; you can redistribute in and/or #
# modify it under the terms of the GNU General Public License, #
# version 2, as published by the Free Software Foundation. #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
##########################################################################

class simple::service inherits simple {

if $::simple::service_manage {

service { $::simple::service_name:
ensure => $::simple::service_ensure,
enable => $::simple::service_enable,

}

}

}

Complex example

The complex module has two public classes: complex::client and complex:server. There is not
init.pp manifest file but there are instead manifests files for each public class. The privates classes are de-
fined in manifests located inside a the sub-directory of their respective public class. Ex: complex::server::install
private class associated to complex::server public class is defined in install.pp manifest inside server
sub-directory.
File README.md:

Puppet-HPC reference documentation 30



CHAPTER 4. DEVELOPMENT GUIDELINES

# complex

#### Table of Contents

1. [Module Description](#module-description)
2. [Setup](#setup)

* [What complex affects](#what-complex-affects)
* [Setup requirements](#setup-requirements)
* [Beginning with complex](#beginning-with-complex)

3. [Usage](#usage)
4. [Limitations](#limitations)
5. [Development](#development)

## Module Description

The module deploys complex client and server.

## Setup

### What complex affects

The module installs complex software in both client and server modes. It manages
the configuration files and server service.

### Setup Requirements

The module depends on:

* ‘stdlib‘ module (for ‘deep_merge()‘ function),
* ‘hpclib‘ module (for ‘print_config()‘ function).

### Beginning with complex

N/A

## Usage

The complex module has two public classes:

* ‘complex::client‘
* ‘complex::server‘

As their name suggest, they respectively manage the client and server parts of
complex software.

The client public class expects a password:

‘‘‘
class { ’::complex::client’:

password => ’CHANGEME’,
}
‘‘‘

The server public class mainly expects a partial configuration options hashes
and a password:

‘‘‘
class { ’::complex::server’:

config_options => {
’section1’ => {

’param1’ => ’value7’,
’param2’ => ’value8’,

},
’section3’ => {

’param5’ => ’value5’,

Puppet-HPC reference documentation 31



CHAPTER 4. DEVELOPMENT GUIDELINES

’param6’ => ’value6’,
},

},
password => ’CHANGEME’,

}
‘‘‘

The ‘config_options‘ hash is deep-merged (using ‘stdlib‘ ‘deep_merge()‘
function) with the default hash from manifest ‘server::params.pp‘. Ideally, the
hash given in argument should only contain the difference with the default hash.
The default hash value is:

‘‘‘
$config_options = {

’section1’ => {
’param1’ => ’value1’,
’param2’ => ’value2’,

},
’section2’ => {

’param3’ => ’value3’,
’param4’ => ’value4’,

},
}

‘‘‘

After the deep merge, the resulting hash is:

‘‘‘
$config_options = {

’section1’ => {
’param1’ => ’value7’,
’param2’ => ’value8’,

},
’section2’ => {

’param3’ => ’value3’,
’param4’ => ’value4’,

},
’section3’ => {

’param5’ => ’value5’,
’param6’ => ’value6’,

},
}

‘‘‘

## Limitations

This module is mainly tested on Debian, but is meant to also work with RHEL and
derivatives.

## Development

Patches and issues can be submitted on GitHub:
https://github.com/edf-hpc/puppet-hpc

File client.pp:
##########################################################################
# Puppet configuration file #
# #
# Copyright (C) 2014-2016 EDF S.A. #
# Contact: CCN-HPC <dsp-cspit-ccn-hpc@edf.fr> #
# #
# This program is free software; you can redistribute in and/or #
# modify it under the terms of the GNU General Public License, #
# version 2, as published by the Free Software Foundation. #

Puppet-HPC reference documentation 32



CHAPTER 4. DEVELOPMENT GUIDELINES

# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
##########################################################################

# Deploys complex client stuff.
#
# @param install_manage Public class manages the installation (default: true)
# @param packages_manage Public class installs the packages (default: true)
# @param packages Array of packages to install (default:
# [’complex-client-package’])
# @param packages_ensure Target state for the packages (default: ’latest’)
# @param config_manage Public class manages the configuration (default: true)
# @param config_file Absolute path to client configuration file (default:
# ’/etc/complex/client.conf’)
# @param user Name of client system user (default:
# ’complex-client-user’)
# @param password Client password (no default)
class complex::client (

$install_manage = $::complex::client::params::install_manage,
$packages_manage = $::complex::client::params::packages_manage,
$packages = $::complex::client::params::packages,
$packages_ensure = $::complex::client::params::packages_ensure,
$config_manage = $::complex::client::params::config_manage,
$config_file = $::complex::client::params::config_file,
$user = $::complex::client::params::user,
$password,

) inherits complex::client::params {

validate_bool($install_manage)
validate_bool($packages_manage)
validate_bool($config_manage)

if $install_manage and $packages_manage {
validate_array($packages)
validate_string($packages_ensure)

}

if $install_manage or $config_manage {
validate_string($user)

}

if $config_manage {
validate_absolute_path($config_file)

}

anchor { ’complex::client::begin’: } ->
class { ’::complex::client::install’: } ->
class { ’::complex::client::config’: } ->
anchor { ’complex::client::end’: }

}

File client/params.pp:
##########################################################################
# Puppet configuration file #
# #
# Copyright (C) 2014-2016 EDF S.A. #
# Contact: CCN-HPC <dsp-cspit-ccn-hpc@edf.fr> #
# #
# This program is free software; you can redistribute in and/or #
# modify it under the terms of the GNU General Public License, #
# version 2, as published by the Free Software Foundation. #

Puppet-HPC reference documentation 33



CHAPTER 4. DEVELOPMENT GUIDELINES

# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
##########################################################################

class complex::client::params {

$install_manage = true
$packages_manage = true
$packages = [’complex-client-package’]
$packages_ensure = ’latest’
$config_manage = true
$config_file = ’/etc/complex/client.conf’
$user = ’complex-client-user’

# There is not any sane and secure possible default values for the following
# params so it is better to not define them in this class.
# $password

}

File client/install.pp:
##########################################################################
# Puppet configuration file #
# #
# Copyright (C) 2014-2016 EDF S.A. #
# Contact: CCN-HPC <dsp-cspit-ccn-hpc@edf.fr> #
# #
# This program is free software; you can redistribute in and/or #
# modify it under the terms of the GNU General Public License, #
# version 2, as published by the Free Software Foundation. #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
##########################################################################

class complex::client::install inherits complex::client {

if $::complex::client::install_manage {

if $::complex::client::packages_manage {

package { $::complex::client::packages:
ensure => $::complex::client::packages_ensure,

}

}

}

}

File client/config.pp:
##########################################################################
# Puppet configuration file #
# #
# Copyright (C) 2014-2016 EDF S.A. #
# Contact: CCN-HPC <dsp-cspit-ccn-hpc@edf.fr> #
# #
# This program is free software; you can redistribute in and/or #
# modify it under the terms of the GNU General Public License, #
# version 2, as published by the Free Software Foundation. #
# This program is distributed in the hope that it will be useful, #

Puppet-HPC reference documentation 34



CHAPTER 4. DEVELOPMENT GUIDELINES

# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
##########################################################################

class complex::client::config inherits complex::client {

if $::complex::client::config_manage {

file { $::complex::client::config_file:
content => template(’complex/client.erb’),
owner => $::complex::client::user,
group => $::complex::client::user,
mode => 0600,

}

}
}

File server.pp:
##########################################################################
# Puppet configuration file #
# #
# Copyright (C) 2014-2016 EDF S.A. #
# Contact: CCN-HPC <dsp-cspit-ccn-hpc@edf.fr> #
# #
# This program is free software; you can redistribute in and/or #
# modify it under the terms of the GNU General Public License, #
# version 2, as published by the Free Software Foundation. #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
##########################################################################

# Deploys complex server stuff.
#
# @param install_manage Public class manages the installation (default: true)
# @param packages_manage Public class installs the packages (default: true)
# @param packages Array of packages to install (default:
# [’complex-server-package’])
# @param packages_ensure Target state for the packages (default: ’latest’)
# @param service_manage Public class manages the service state (default: true)
# @param service_name Name of the service to manage (default:
# ’complex-server-service’)
# @param service_ensure Target state for the service (default: ’running’)
# @param service_enable The service starts at boot time (default: true)
# @param config_manage Public class manages the configuration (default: true)
# @param config_file Absolute path to server configuration file (default:
# ’/etc/complex/server.conf’)
# @param config_options Hash of configuration default overrides (default: {})
# @param user Name of server system user (default:
# ’complex-server-user’)
# @param password Server password (no default)
class complex::server (

$install_manage = $::complex::server::params::install_manage,
$packages_manage = $::complex::server::params::packages_manage,
$packages = $::complex::server::params::packages,
$packages_ensure = $::complex::server::params::packages_ensure,
$service_manage = $::complex::server::params::service_manage,
$service_name = $::complex::server::params::service_name,
$service_ensure = $::complex::server::params::service_ensure,
$service_enable = $::complex::server::params::service_enable,
$config_manage = $::complex::server::params::config_manage,

Puppet-HPC reference documentation 35



CHAPTER 4. DEVELOPMENT GUIDELINES

$config_file = $::complex::server::params::config_file,
$config_options = {},
$user = $::complex::server::params::user,
$password,

) inherits complex::server::params {

validate_bool($install_manage)
validate_bool($packages_manage)
validate_bool($service_manage)
validate_bool($config_manage)

if $install_manage and $packages_manage {
validate_array($packages)
validate_string($packages_ensure)

}

if $service_manage {
validate_string($service_name)
validate_string($service_ensure)
validate_bool($service_enable)

}

if $install_manage or $config_manage {
validate_string($user)

}

if $config_manage {
validate_absolute_path($config_file)
validate_hash($config_options)
validate_string($password)
$_config_options = deep_merge(

$config_options,
$::complex::server::params::config_options)

}

anchor { ’complex::server::begin’: } ->
class { ’::complex::server::install’: } ->
class { ’::complex::server::config’: } ->
class { ’::complex::server::service’: } ->
anchor { ’complex::server::end’: }

# config change must notify service
Class[’::complex::server::config’] ~> Class[’::complex::server::service’]

}

File server/params.pp:
##########################################################################
# Puppet configuration file #
# #
# Copyright (C) 2014-2016 EDF S.A. #
# Contact: CCN-HPC <dsp-cspit-ccn-hpc@edf.fr> #
# #
# This program is free software; you can redistribute in and/or #
# modify it under the terms of the GNU General Public License, #
# version 2, as published by the Free Software Foundation. #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
##########################################################################

class complex::server::params {

Puppet-HPC reference documentation 36



CHAPTER 4. DEVELOPMENT GUIDELINES

$install_manage = true
$packages_manage = true
$packages = [’complex-server-package’]
$packages_ensure = ’latest’
$service_manage = true
$service_name = ’complex-server-service’
$service_ensure = ’running’
$service_enable = true
$config_manage = true
$config_file = ’/etc/complex/server.conf’
$config_options = {

’section1’ => {
’param1’ => ’value1’,
’param2’ => ’value2’,

},
’section2’ => {

’param3’ => ’value3’,
’param4’ => ’value4’,

},
}
$user = ’complex-server-user’

# There is not any sane and secure possible default values for the following
# params so it is better to not define them in this class.
# $password

}

File server/install.pp:
##########################################################################
# Puppet configuration file #
# #
# Copyright (C) 2014-2016 EDF S.A. #
# Contact: CCN-HPC <dsp-cspit-ccn-hpc@edf.fr> #
# #
# This program is free software; you can redistribute in and/or #
# modify it under the terms of the GNU General Public License, #
# version 2, as published by the Free Software Foundation. #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
##########################################################################

class complex::server::install inherits complex::server {

if $::complex::server::install_manage {

if $::complex::server::packages_manage {

package { $::complex::server::packages:
ensure => $::complex::server::packages_ensure,

}

}

}

}

File server/config.pp:
##########################################################################
# Puppet configuration file #
# #
# Copyright (C) 2014-2016 EDF S.A. #

Puppet-HPC reference documentation 37



CHAPTER 4. DEVELOPMENT GUIDELINES

# Contact: CCN-HPC <dsp-cspit-ccn-hpc@edf.fr> #
# #
# This program is free software; you can redistribute in and/or #
# modify it under the terms of the GNU General Public License, #
# version 2, as published by the Free Software Foundation. #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
##########################################################################

class complex::server::config inherits complex::server {

if $::complex::server::config_manage {

hpclib::print_config{ $::complex::server::config_file:
style => ’keyval’,
data => $::complex::server::::_config_options,

}

}

}

File server/service.pp:
##########################################################################
# Puppet configuration file #
# #
# Copyright (C) 2014-2016 EDF S.A. #
# Contact: CCN-HPC <dsp-cspit-ccn-hpc@edf.fr> #
# #
# This program is free software; you can redistribute in and/or #
# modify it under the terms of the GNU General Public License, #
# version 2, as published by the Free Software Foundation. #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
##########################################################################

class complex::server::service inherits complex::server {

if $::complex::server::service_manage {

service { $::complex::server::service_name:
ensure => $::complex::server::service_ensure,
enable => $::complex::server::service_enable,

}

}

}

4.6 Profiles

Profiles instantiate modules public classes. Optionally, they can provide a set of arguments to the public
classes.
Technically speaking, profiles are Puppet classes defined in manifests grouped into one profiles module just
like classic generic modules. It is possible to define arbitrary levels of sub-classes but classes inheritances
must be avoided between profiles classes for the sake of clearness and simplicity. For example, the profiles

Puppet-HPC reference documentation 38



CHAPTER 4. DEVELOPMENT GUIDELINES

classes profiles::soft::server and profiles::soft::client can be defined but they cannot inherit
from an hypothetical parent profiles::soft class.
As previously stated in the main rules, the profiles must stay as simple as possible: they should only
manipulate parameters that have to be manipulated at this layer of the stack. It includes the following
parameters:

• Results of hiera_array() and hiera_hash() calls on advanced parameters, for the reasons explained
in the advanced parameters section.

• Results of stdlib and hpclib function calls because Puppet functions cannot be called directly in hiera.
• Results of hiera*() functions when multiple profiles provide different argument values to the same

module public class (case C in schema).
• Parameters whose values are computed based on the above parameters.

It implies that hiera autolookups must be preferred over profiles parameters when possible (case A is
preferred over case B in schema).

profiles::soft::server

soft::init(param) {}

profiles

modules

hieradata soft::param: value1

profiles::soft::client

autolookup

class { 'soft': }

profiles::soft::server

soft::init(param) {}

profiles::soft::param: value1

profiles::soft::client

class { 'soft':
  param => value1
}

hiera('profiles::soft::param')

profiles::soft::server

soft::init(param) {}

profiles::soft::server::param: value1

profiles::soft::client

class { 'soft':
  param => value1
}

hiera('profiles::soft::
       server::param')

profiles::soft::client::param: value2

hiera('profiles::soft::
       client::param')

class { 'soft':
  param => value2
}

case Bcase A case C

Figure 4.5: Autolookup vs profiles parameters

Profiles can only import the following types of parameters from hieradata:

• Shared parameters, as defined in parameters types section.
• Profiles parameters.

The profiles parameters must be prefixed by profiles::<profile> where <profile> is the name
of the profile. A parameter can be imported by multiple profiles classes sharing sharing a sub-class
namespace. For example, the profiles::soft::server and profiles::soft::client classes can
share profile parameters because there are both in the profiles::soft sub-class namespace. However,
profiles::monitoring and profiles::scheduler cannot share profile parameters. If a parameter is
shared by multiple profiles classes, <profile> must be replaced by the highest common sub-class names-
pace. For example:

• a parameter shared by profiles::monitoring::client and profiles::monitoring::servermust
be prefixed by profiles::monitoring.

• a parameter shared by profiles::env::soft::client and profiles::env::soft:server must
be prefixed by profiles::env::soft.

When importing hash or array parameters from hiera, the profiles must set the default value with an empty
structure with the second argument of hiera_hash,array() functions. Ex:
hiera_hash(’profile::soft::param’, {})

Profiles cannot import parameters autolookup-ed by modules.
Profiles cannot define resources. The standard create_resource() function and stdlib ensure_resource()
function are just wrappers over resources definitions. Therefore, they are also prohibited inside profiles
classes.

Puppet-HPC reference documentation 39



CHAPTER 4. DEVELOPMENT GUIDELINES

4.7 Roles

As stated in the roles section of the software architecture chapter, a role is a set of profiles. Puppet-HPC
requires that this list of profiles is an array in the profiles parameter of the hieradata. It has to be
defined in the role level of the hieradata in order to be different from one role to another.
This a requirement in Puppet-HPC because hpclib module functions extracts roles and profiles definitions
from the hieradata.
As explained in the project genericity goals, the roles are specific to each cluster. Owing to this charateristic,
the role level of the hieradata must stay as small as possible to avoid duplications of parameters from one
cluster to another. Ideally, it should only contain the profiles array. In particular, settings that are closely
coupled to the general architecture of Scibian HPC clusters or settings that be directly be deduced from
other parameters must not be defined in this level of the hieradata.

4.8 Advanced processing

For the sake of consistency and coherency, it is sometimes relevant to define advanced data structures
in the hieradata (ex: networks settings) irrespectively of modules expectations. These data structures
have to be processed then by some logic to generate other runtime temporary data structures ready to be
consumed by modules.
There two ways to process data extracted from hieradata in Puppet:

• Custom facts,
• Custom parser functions.

Facts have the advantage of being usable directly in the hieradata, quite the opposite of Puppet parser
functions. But facts are processed unconditionally, it is therefore important to keep them consistent and
light. In Puppet-HPC, facts are considered relevant for very generic parameters used in many places across
the hieradata. For other processing, typically for generating resources hash definitions, Puppet parser
functions are largely preferred.

4.9 Git repository

All Puppet-HPC developments must happen in master branch. There are other branches for dedicated
purpose:

• The gh-pages branch for publishing the documentation on GitHub,
• The calibre/* branches for Debian/Scibian packages maintenance.

All other branches are temporary development branches and should be removed regularly.
Merge commits (ie. commits with two parents) are forbidden in the master branch. Commits must be
re-based on remote HEAD before being pushed.
The commit messages must follow the Git official documentation commit guidelines.
In a few words:

• First line summary length must be under 50 chars.
• Unless really obvious, there should be a long summary (separated by a blank line with first line) with a

detailled description wrapped to 72 chars. This long summary should focus on what and why instead
of how. The how must be wisely explained in codes comments or in documentation.

• Only one logical changeset per commit.
• git diff –check error free, notably with trailing white spaces.

The commit messages must be written in English.
The short summary must follow this format:

Puppet-HPC reference documentation 40

https://docs.puppet.com/facter/3.5/custom_facts.html
https://docs.puppet.com/guides/custom_functions.html
https://www.git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project#Commit-Guidelines


CHAPTER 4. DEVELOPMENT GUIDELINES

<prefix>: <summary>

Where <prefix> depends on commit modification target:

• doc for modifications in the doc/ directory.
• ex for modifications in the examples/ directory.
• hieradata for modifications in the hieradata/ directory.
• prof:<profile>, where <profile> is the top profile name, for modifications on profiles.
• mod:<module>, where <module> is the name of the module, for modifications on a module.

For example, for modifications on:

• profile profiles::foo, the prefix is prof:foo,
• profile profiles::base::bar, the prefix is prof:base,
• module simple, the prefix is mod:simple
• public class complex::server::params, the prefix is mod:complex

This implies that a commit should modify only one type of content: one module, profiles sharing the same
hierarchy, hieradata, documentation, and so on. Exceptions to this rule can happen but must be reserved
to very specific corner cases (ex: large refactoring) and must be done wisely.

4.10 Debugging

4.10.1 Static analysis

Puppet-HPC provides a script validate.sh to check both the syntax and the code style of the modules.
To check the syntax, run the following command:
$ puppet-config/validate.sh --syntax

The script must print Syntax OK for all files, otherwise errors must be fixed.
To check the code style, run the following command:
$ puppet-config/validate.sh --lint

The script must not print any ERROR or WARNING, otherwise they must be fixed.
The script can eventually take a module name in parameter to restrict the check on this module.
Internally , the script actually runs the puppet-lint command. The command can also be ran manually
using the following additional parameters:

• –no-class_inherits_from_params_class-check: the configuration does not support puppet <
3.0, so this check is ignored

• –no-80chars-check: the limit in the style guide is 140 characters, but puppet-lint in Debian Jessie
is not up to date.

4.10.2 Scripts

4.10.3 Unit tests

4.11 Documentation

4.11.1 Module

Each module must be accompanied by a README.md file located at the root directory of the module. This
file must be formatted in markdown markup language. The content of this file must respect the official

Puppet-HPC reference documentation 41

https://en.wikipedia.org/wiki/Markdown


CHAPTER 4. DEVELOPMENT GUIDELINES

Puppet modules documentation specifications in terms of content and format, except for the reference
section. This section is replaced by inline manifest documentation using Puppet strings format.

4.11.2 Profiles

All profiles must be documented inline using Puppet strings format as well. In the heading comments
of each profile manifests, there must be a Hiera section which contains the list of expected hieradata
parameters along with their description, types and optionally examples of values.

Puppet-HPC reference documentation 42

https://docs.puppet.com/puppet/4.8/modules_documentation.html
https://github.com/puppetlabs/puppet-strings


Chapter 5

Reference API

43


	About this document
	Purpose
	Typographic conventions
	Build dependencies
	License
	Authors

	Overview
	Software architecture
	Pattern
	Hiera layers
	Internal repository
	External dependencies
	Genericity levels
	Roles
	Cluster definition
	Main shared parameters
	Network definitions
	Node definitions

	Deployment
	Push and apply scripts
	Packages

	Sensitive data encryption
	Encryption keys
	Key propagation service
	Sensitive files decryption
	Bootstrap procedure


	Development Guidelines
	Main rules
	Directories structure
	Language settings
	Hieradata
	Parameter types
	Shared parameters
	Simple parameters
	Advanced parameters
	Interpolation

	Modules
	Dependencies
	Classes inheritance
	Parameters
	Arguments
	Examples

	Profiles
	Roles
	Advanced processing
	Git repository
	Debugging
	Static analysis
	Scripts
	Unit tests

	Documentation
	Module
	Profiles


	Reference API

